Explosion gravitation field algorithm with dust sampling for unconstrained optimization
نویسندگان
چکیده
منابع مشابه
Hybrid differential evolution and gravitation search algorithm for unconstrained optimization
This paper proposed an algorithm called DE-GSA. The proposed algorithm incorporates both the concepts from Differential evolution algorithm (DE) and Gravitation search algorithm (GSA), updating particles not only by DE operators but also by GSA mechanisms. The proposed algorithm is tested on several benchmark functions including unimodal and multimodal test functions, multimodal test function w...
متن کاملAn Efficient Conjugate Gradient Algorithm for Unconstrained Optimization Problems
In this paper, an efficient conjugate gradient method for unconstrained optimization is introduced. Parameters of the method are obtained by solving an optimization problem, and using a variant of the modified secant condition. The new conjugate gradient parameter benefits from function information as well as gradient information in each iteration. The proposed method has global convergence und...
متن کاملA new hybrid conjugate gradient algorithm for unconstrained optimization
In this paper, a new hybrid conjugate gradient algorithm is proposed for solving unconstrained optimization problems. This new method can generate sufficient descent directions unrelated to any line search. Moreover, the global convergence of the proposed method is proved under the Wolfe line search. Numerical experiments are also presented to show the efficiency of the proposed algorithm, espe...
متن کاملFirefly Algorithm for Unconstrained Optimization
Meta-heuristic algorithms prove to be competent in outperforming deterministic algorithms for real-world optimization problems. Firefly algorithm is one such recently developed algorithm inspired by the flashing behavior of fireflies. In this work, a detailed formulation and explanation of the Firefly algorithm implementation is given. Later Firefly algorithm is verified using six unimodal engi...
متن کاملAn estimation of distribution algorithm with adaptive Gibbs sampling for unconstrained global optimization
In this paper is proposed a new heuristic approach belonging to the field of evolutionary Estimation of Distribution Algorithms (EDAs). EDAs builds a probability model and a set of solutions is sampled from the model which characterizes the distribution of such solutions. The main framework of the proposed method is an estimation of distribution algorithm, in which an adaptive Gibbs sampling is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Soft Computing
سال: 2019
ISSN: 1568-4946
DOI: 10.1016/j.asoc.2019.105500